Solutions to tutorial exercises for stochastic processes

T1. The process $(M + N)_t$ is increasing and right-continuous, since M_t and N_t are increasing and right-continuous. Furthermore

$$(M+N)_t - (M+N)_s = M_t - M_s + N_t - N_s \sim \text{POI}((\lambda + \mu)(t-s)),$$

since $M_t - M_s$ and $N_t - N_s$ are independent and Poisson distributed with parameter $\lambda(t-s)$ and $\mu(t-s)$ respectively. It remains to show that $(M+N)_t$ has steps of size 1 almost surely. Construct the process M'_t by placing $X_i \sim \text{POI}(\lambda)$ points, x_1^i, \ldots, x_k^i , uniformly at random in the interval [i, i+1), so that $M'_t \stackrel{d}{=} M_t$. Similarly construct $N'_t \stackrel{d}{=} N_t$ by placing the points y_1^i, \ldots, y_l^i in the interval [i, i+1). Then $(M' + N')_t \stackrel{d}{=} (M + N)_t$. Suppose $(M' + N')_t$ has a jump of size 2. Then there exists an interval [i, i+1) such that $x_v^i = y_w^i$ for some $v, w \in \mathbb{N}$. Now,

$$\mathbb{P}((M'+N')_{t} \text{ has jump of size } 2) \leq \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{v=1}^{k} \sum_{w=1}^{l} \mathbb{P}(X_{i}=k, Y_{i}=l, x_{v}^{i}=y_{w}^{i})$$
$$= \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{v=1}^{k} \sum_{w=1}^{l} \mathbb{P}(X_{i}=k) \mathbb{P}(Y_{i}=l) \mathbb{P}(x_{v}^{i}=y_{w}^{i})$$
$$= 0,$$

since $\mathbb{P}(x_v^i = y_w^i) = 0$. So $(M' + N')_t$ has steps of size 1 almost surely and thus $(M + N)_t$ as well.

T2. Let $O = (O_{ij})$. The vector Y := OX has a multivariate Gaussian distribution: for $a_1, \ldots, a_n \in \mathbb{R}$ we have

$$\sum_{j=1}^{n} a_j Y_j = \sum_{j=1}^{n} a_j \sum_{i=1}^{n} O_{ij} X_i = \sum_{i=1}^{n} b_i X_i,$$

for some $b_1, \ldots, b_n \in \mathbb{R}$, so that this sum is Gaussian. Furthermore for $1 \leq i \leq n$ and $1 \leq j \leq n$ we have

$$\mathbb{E}[Y_j] = \mathbb{E}\left[\sum_{i=1}^n O_{ij}X_i\right] = 0,$$

and

$$\operatorname{Cov}(Y_i, Y_j) = \operatorname{Cov}\left(\sum_{k=1}^n O_{ki}X_k, \sum_{k=1}^n O_{kj}X_k\right) = \sum_{k=1}^n O_{ki}O_{kj}\operatorname{Cov}(X_k, X_k) = \mathbb{1}_{\{i=j\}},$$

since O is an orthogonal matrix. Since the distribution of a multivariate Gaussian random variable is determined by its expectation and its covariance matrix, it follows that

$$OX \stackrel{d}{=} X.$$

T3. Note that the company can only go bankrupt at an arrival time of a claim. We define $\psi_k(u)$ as the probability that the company goes bankrupt at or before the kth claim. We have $\psi_k \to \psi(u)$ as $k \to \infty$, so it suffices to show that $\psi_k(u) \leq \exp(-Ru)$ for all $k \in \mathbb{N}$. We define $\psi_0(u) = 0$, so that $\psi_0(u) \leq \exp(-Ru)$. We now use induction on k: we suppose $\psi_{k-1}(u) \leq \exp(-Ru)$. Conditioning on the time and the size of the first claim gives

$$\psi_k(u) = \int_0^\infty \int_0^\infty \psi_{k-1}(u+ct-x)\mu(\mathrm{d}x)\lambda e^{-\lambda t}\mathrm{d}t$$

$$\leq \int_0^\infty \int_0^\infty \exp\left(-R(u+ct-x)\right)\mu(\mathrm{d}x)\lambda e^{-\lambda t}\mathrm{d}t$$

$$= e^{-Ru} \int_0^\infty e^{Rx}\mu(\mathrm{d}x) \int_0^\infty \lambda \exp\left(-t(cR+\lambda)\right)\mathrm{d}t$$

$$= e^{-Ru} \frac{\lambda}{cR+\lambda} m_X(R)$$

$$= e^{-Ru}.$$

(Formally we make use of the strong Markov property in the first equation above, but this will only be introduced later in the course.)